Años 780-850

El matemático y astrónomo persa Musa al-Juarismi (780-850), inventó el algoritmo, es decir, la resolución metódica de problemas de álgebra y cálculo numérico mediante una lista bien definida, ordenada y finita de operaciones.

Acerca del Algoritmo:
En matemáticas, lógica, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus y este a su vez del matemático persa Al-Juarismi) es un conjunto prescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite llevar a cabo una actividad mediante pasos sucesivos que no generen dudas a quien deba hacer dicha actividad. Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia.

En la vida cotidiana, se emplean algoritmos frecuentemente para resolver problemas. Algunos ejemplos son los manuales de usuario, que muestran algoritmos para usar un aparato, o las instrucciones que recibe un trabajador por parte de su patrón. Algunos ejemplos en matemática son el algoritmo de multiplicación, para calcular el producto, el algoritmo de la división para calcular el cociente de dos números, el algoritmo de Euclides para obtener el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un sistema de ecuaciones lineales.

En términos de programación, un algoritmo es una secuencia de pasos lógicos que permiten solucionar un problema.

Los diagramas de flujo sirven para representar algoritmos de manera gráfica.

Acerca del análisis numérico o cálculo numérico
es la rama de las matemáticas encargada de diseñar algoritmos para, a través de números y reglas matemáticas simples, simular procesos matemáticos más complejos aplicados a procesos del mundo real.
El análisis numérico cobra especial importancia con la llegada de los ordenadores. Los ordenadores son útiles para cálculos matemáticos extremadamente complejos, pero en última instancia operan con números binarios y operaciones matemáticas simples.

Desde este punto de vista, el análisis numérico proporcionará todo el andamiaje necesario para llevar a cabo todos aquellos procedimientos matemáticos susceptibles de expresarse algorítmicamente, basándose en algoritmos que permitan su simulación o cálculo en procesos más sencillos empleando números.

Definido el error, junto con el error admisible, pasamos al concepto de estabilidad de los algoritmos. Muchas de las operaciones matemáticas pueden llevarse adelante a través de la generación de una serie de números que a su vez alimentan de nuevo el algoritmo (feedback). Esto proporciona un poder de cálculo y refinamiento importantísimo a la máquina que a medida que va completando un ciclo va llegando a la solución. El problema ocurre en determinar hasta cuándo deberá continuar con el ciclo, o si nos estamos alejando de la solución del problema.
Finalmente, otro concepto paralelo al análisis numérico es el de la representación, tanto de los números como de otros conceptos matemáticos como los vectores, polinomios, etc. Por ejemplo, para la representación en ordenadores de números reales, se emplea el concepto de coma flotante que dista mucho del empleado por la matemática convencional.

En general, estos métodos se aplican cuando se necesita un valor numérico como solución a un problema matemático, y los procedimientos “exactos” o “analíticos” (manipulaciones algebraicas, teoría de ecuaciones diferenciales, métodos de integración, etc.) son incapaces de dar una respuesta. Debido a ello, son procedimientos de uso frecuente por físicos e ingenieros, y cuyo desarrollo se ha visto favorecido por la necesidad de éstos de obtener soluciones, aunque la precisión no sea completa. Debe recordarse que la física experimental, por ejemplo, nunca arroja valores exactos sino intervalos que engloban la gran mayoría de resultados experimentales obtenidos, ya que no es habitual que dos medidas del mismo fenómeno arrojen valores exactamente iguales.

Fuentes y Referencias de Wikipedia: 
Forsythe, George E. (1 de enero de 1970). «Pitfalls in Computation, or why a Math Book isn’t Enough». The American Mathematical Monthly 77 (9): 931-956. doi:10.2307/2318109. Consultado el 2 de marzo de 2016.
Goldberg, David (1 de marzo de 1991). «What Every Computer Scientist Should Know About Floating-point Arithmetic». ACM Comput. Surv. 23 (1): 5-48. doi:10.1145/103162.103163. ISSN 0360-0300. Consultado el 2 de marzo de 2016.
Panchekha, Pavel; Sanchez-Stern, Alex; Wilcox, James R.; Tatlock, Zachary (1 de enero de 2015). «Automatically Improving Accuracy for Floating Point Expressions».
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2015 (ACM): 1-11. doi:10.1145/2737924.2737959. ISBN 9781450334686. Consultado el 2 de marzo de 2016.
Altman, Micah; Gill, Jeff; McDonald, Michael P. (15 de febrero de 2004). Numerical Issues in Statistical Computing for the Social Scientist (en inglés). John Wiley & Sons. ISBN 9780471475743. Consultado el 2 de marzo de 2016.
Altman, Micah; McDonald, Michael P. (1 de agosto de 2003). «Replication with Attention to Numerical Accuracy». Political Analysis (en inglés) 11 (3): 302-307. doi:10.1093/pan/mpg016. ISSN 1047-1987. Consultado el 2 de marzo de 2016.
McCullough, B. D.; Vinod, H. D. (1 de enero de 1999). «The Numerical Reliability of Econometric Software». Journal of Economic Literature 37 (2): 633-665. Consultado el 2 de marzo de 2016.